Development and validation of a stochastic molecular model of cellulose hydrolysis by action of multiple cellulase enzymes

نویسندگان

  • Deepak Kumar
  • Ganti S. Murthy
چکیده

Background: Cellulose is hydrolyzed to sugar monomers by the synergistic action of multiple cellulase enzymes: endo-β-1,4-glucanase, exo-β-1,4 cellobiohydrolase, and β-glucosidase. Realistic modeling of this process for various substrates, enzyme combinations, and operating conditions poses severe challenges. A mechanistic hydrolysis model was developed using stochastic molecular modeling approach. Cellulose structure was modeled as a cluster of microfibrils, where each microfibril consisted of several elementary fibrils, and each elementary fibril was represented as three-dimensional matrices of glucose molecules. Using this in-silico model of cellulose substrate, multiple enzyme actions represented by discrete hydrolysis events were modeled using Monte Carlo simulation technique. In this work, the previous model was modified, mainly to incorporate simultaneous action enzymes from multiple classes at any instant of time to account for the enzyme crowding effect, a critical phenomenon during hydrolysis process. Some other modifications were made to capture more realistic expected interactions during hydrolysis. The results were validated with experimental data of pure cellulose (Avicel, filter paper, and cotton) hydrolysis using purified enzymes from Trichoderma reesei for various hydrolysis conditions. Results: Hydrolysis results predicted by model simulations showed a good fit with the experimental data under all hydrolysis conditions. Current model resulted in more accurate predictions of sugar concentrations compared to previous version of the model. Model results also successfully simulated experimentally observed trends, such as product inhibition, low cellobiohydrolase activity on high DP substrates, low endoglucanases activity on a crystalline substrate, and inverse relationship between the degree of synergism and substrate degree of polymerization emerged naturally

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production

BACKGROUND During cellulosic ethanol production, cellulose hydrolysis is achieved by synergistic action of cellulase enzyme complex consisting of multiple enzymes with different mode of actions. Enzymatic hydrolysis of cellulose is one of the bottlenecks in the commercialization of the process due to low hydrolysis rates and high cost of enzymes. A robust hydrolysis model that can predict hydro...

متن کامل

Enzymatic Hydrolysis of Olive Industry Solid Waste into Glucose, the Precursor of Bioethanol

Olive industry solid waste (OISW) is a by-product generated in the process of olive oil extraction. It is a lignocellulosic material consisting of cellulose, hemicelluloses, lignin and other extractives. In this work, a process for hydrolyzing the OISW into its monomers glucose, the precursor of bioethanol was developed.  The hydrolysis process involves two stages: in the first stage, the O...

متن کامل

Optimization of Extracellular Cellulase Production by Trichoderma harzianum

ABSTRACT        Background and Objectives: Cellulose is a major component of plant biomass, which can be converted into biofuels and valuable chemicals. The key step in utilization of this organic material is its hydrolysis into soluble sugars. This study evaluated cellulase production by Trichoderma harzianum under different pH values, temperatures and incubation...

متن کامل

A coarse-grained model for synergistic action of multiple enzymes on cellulose

BACKGROUND Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, β-glucosi...

متن کامل

Investigating Cellulase Producing Potential of Two Iranian Thermoascus aurantiacus Isolates in Submerged Fermentation

Cellulose is the most plentiful renewable biopolymer in nature which could be utilized by cellulolytic enzymes. Cellulases are among the most important groups of industrial enzymes which are widely consumed in biofuel production, pulp and paper, textile, and detergent industries. These enzymes can support a cleaner environment through reducing chemical processes in mentioned industries and agro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017